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A coherent system with independent non-renewatle components with arbitrary lifetime dis-
tributions is considered. A simple observation leads to a hierarchy of upper and lower bounds
that converge to the exact system reliability. The simplest of these bounds is shown to be
tighter than the bounds of Gertsbakh (1985).
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t
1. Introduction {
N
Consider a coherent system consisting of n independent non-renewable components {l. 2,.., n}, i
with lifetime distributions Fj, i=1, 2,..,n. Let X= { X(1),£2>0} be the vector performance -
process of these components such that X(¢) = (X;(2), X2(2), .., X,(9)) and X;(s) takes the value -
0 if component i is up at time t and 1 otherwise. The state space S of X is then {0, l} »
Let ¢ be the coherent structure function of the system. That is ¢:S -+ {0, 1}, is non-decreasing .
on S and when ¢(X(#)) is O the system functions at time t and is 1 otherwise. The reliability ‘
R(t) of the system at time t is then given by 1 — Ef¢(X(1))}. It is of interest to obtain R. ;
In general it is not possible to obtain explicit formula for R and one resort to algorithmic ,
methods to compute R. Except in some special cases [e.g. Agrawal and Satyanarayana (1984), o
Provan and Ball (1984), and Shanthikumar (1982, 1984)], the problem is in general NP-hard o
[e.g. Buzacott (1980), and Ball (1984)]. Consequently approximation and bounds have been
developed [e.g. Ball and Provan (1983), Gertsbakh (1985), Shanthikumar (1984), and Shogan %
(1976)]. In this paper we derive alternative bounds for R and compare them to that of
Gertsbakh (1985). «
Let h(p) = E{¢(X(1))}, where p; = E{X;(1)} = Fi(1), and let (G, B) be a partition of S such that

G-{xq}(x) 0,xeS} and  define U,-{xllxll-l xeS},{=1,2,. ,n. where ;
IleI-Ex, Suppose min {||x|[:xeB}=r. Then B= U where 'y
=BN U' Jj=r,r+1,.., n. With these observations one has, -
h(p) -2{ I_IP:}{ [Ta —p,)} : (1 '3

28 L) jemx) :~

-4, ) >

l=r ,:~

where N

A= { Hp.-}{ [Ta -p,-)} : 3)
xeVy Liei#() 1eW(3)

MW(x) = {kxy=0,k=1,2,..,n}, is the set of working components in state x, and ¥
3 W(!) - {lvzv--o n} - W(;)' ::.
Suppose we have upper and lower bounds By 24,2 Cy, { =r,r+1,..,n. Then we will have -
a sequence of upper and lower bounds for h(p) and consequently for R. Specifically 3
"
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2.4, + Zc, Sh(p) < 24, +23, . @)

l=m

ST AY

for m=rr+1,.n+1, [ we use 21;-0 b<afor all y;). Note that the above bounds get tighter
as m increases and give theexact unrealibility when m = n + 1. This allows one to
progressively compute 4,,4,,1,..., until a desired accuracy is found.

In Section 2 we develop some upper and lower bounds for 4; and compare it to that of
Gertsbakh (1985). A simple numerical example is given in Section 3.

- -y - o
e NN N

2. The Bounds

Without loss of generality assume that the components are numbered so that py 2 p2 2 ... 2 - o4
Since p; = F;(#) depend on t, this numbering may have to be altered for different values of t,
unless F1(f) 2 F5(0) 2 ... 2 F,(1), for all 12 0.

Proposition 2.1: Let | | V7] | be the number of elements in the set ¥;. Then

Al {f[pm-‘} [Ta —pm.,-)} =cf?

(4 » P
s4, <1171 {HP:} [Ta —p,-)} =8, (s) ,
2}

il -1

Proof: 1t is easily seen that for any x ¢ ¥},

¢ " . i
E {Hﬁnn-t}{ H a -pn+1-j)} s { H Pi}{ H a "'Pj)} :
v jml J=l+1 “,-;(!) & W(z) '_:

[4 [
3 s{'l:llp,-} .11(1 —p,-)}-

The result now directly follows from (3).

Bounds for System Reliability Function
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To use the bounds Cfl) and Bfl) one needs to know | {¥]|. Once | [V} |, 0 =r,r+1,..,
are known one may use the recursion Bfy = {11 %11/ 119711} fors1/ (1= e} to
compute B§D,2 =r,7+1,... [A similar recursion may be used for C$1),# = r,7 +1,...] In some
cases obtaining | | ¥y | | itself 3 turn out to be computationally difficult. In such a case
the observation that | | 1] | £ ’) leads to a3 modification of B§! as follows:

Proposition 2.2:

s Ot}

i=-1

n+l—f
We will pext obtain a modification of B§?. Define Pjt= X pi/(n+1-9H and
P,-‘-_E_pj/(n+1-i),i-1,2,....n. For any ye¢ S let ~
i =

) if y=1
ON=9." - .. 1
< {1-1’,. if y=0

Then

Proposition 2.3: For any ye Uy,

4< (;) [Jew. 0

t=1

Proof: Let P be the collection of ail permutations of {1,2,.., n}. Then

AL}

2¢U Y4 W () «W(x)

sepP =]

l n
mesm % L] ®

where

Bounds for System Reliability Function 3
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if y=1
'(") = () . !
g (7. y) {ill —pap It y=0.

Now consider a subset P*~! of P, such that the first (n-1) elements in each of the permutations
in P*~! are identical. Then for any n’ € P*~1

L] a—1
Y [Ja@mn=Jat=".» D ey

s P =1 [ oy

n—1
<[Jatw.» ¥ a.»

=] et

[t
- 3 [Tatmpe,m.

e =1

since by definition Q,(y) 2 ¢,(m,y) for all 7 ¢ P*~1_ Note that | IP"'ll | = 1. Therefore

» n-1
> [atm» s 3 [Jatmn2.0.
el =} el (=]

Now defining P"=2 10 be a subset of P such that the first n-2 elements of every permutation
in there is identical one sees that

-2 -2
2 Hq,-(w..g)s 2 Hq,-(ﬂ.,_V)Q,.-l(z).

g2 =1 g P2 =1

since by definition 2.0,_10) 2> 2 2q,,_;(w, »). Note that | IP"‘ZI | =2. Then
= e P =

L) n—2 L]
Ylaw <> [Tamn [Jow
vel (=1 wepP i=] J=n—1

Continuing this way and observing that | | P| | = n!, Equation (8) leads to the required result.

0
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:_ Since (7) may give different upperbounds for different y’s, it is appropriate that we choose S

: the minimum of such bounds. In this regard define # * to be a permutation of {1,2,..,n} ﬁ';

: such that e

3 l:v

Pl Pl Pl ,

L Ty T ki . (9) ‘:3

1 - Pv'(l) l - P'o(z) 1 - PI'(n) ‘-

Then using a straightforward pairwise interchange it can be shown that :_jZ

Proposition 2.4

- :

y € [ il '_':
.: t
'Hpm[hlhw) 0

=1 Je=l+1 o,

Equivalently B

. ;
. f=} -~
We will next provide an alternative upper bound for EA, which is tighter than that given i

by Gertsbakh (1985). -

Proposition 2.5: .

>4, s( ) HP* 235" . (11)

t=k t=1 l=k

Proof: Observe that -

ZA, <P{at least k components are down at time t}. (12)

t—k

: :
: Since for any w ¢ P, >
) *
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k "
P{components 7(1),w(2),..,w(k) are down} = H Pati)r iy
=1 r
; r
one has from (12) -
' L) 1 k ::
‘ E”’ aPTeEysY Zf, ,I:,I” @ (13) :
Using an apalysis similar to that used for the proof of Proposition 2.3 one gets ’
r ' -
2 [Tewo s [ 127 (14) %
P (m] f=] :-;
. ;
Combining (13) and (14) one obtains the desired result.
;:.
When the lifetime of component i is exponentially distributed with rate A;, one has -
Pi=1—exp(=A;), i=12,..n. With A1 2A22...2A,, =
1 al—i '
+ N
Pr=oir & (1 -exp(-A) N
=1 3
. .
_ S;—;l—;—iAi-l'- :
n—-{ -
. where A; = 21 Aj. Therefore from (11), one gets ‘A
. J-
. ”n n r+l .
: I§l r+1 !‘.—1[ ! X
: n r A," .:
< s
: '(r+l)g{n—i} s

(15)

]
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The right hand side of (15) is the bound obtained by Gertsbakh (1985). Clearly (11) is a
tighter bound and is applicable to any component lifetime distributions.

In summary, one can use (4) along with (5), (6), (10), and (11) to obtain alternative bounds

for the system reliability function R. Since the computation of these bounds are relatively
simple, all these bounds may be computed and the best value can be used.

3. A Numerical Example

Consider the network shown below in Figure 1. Suppose we are interested in the reliability
that node s is connected to node t by at least one path of working edges.

Figure 1: Directed Reliability Network

i 1 2 3 4 5
1 1 .08 08 .08

=T

Table 1: Edge unreliabilities (p).

The edge failure probabilities p; = 1,2,3,4,5 are given in Table 1. Then the minimum number
of failed edges needed for a cut-set is r=2, and

V,={(0,0,1,1,1),(1,1,1,0,0),(0,1,1,1,0}}

= {(0,0,0,1,1),(0,0,1,0,1),(0,0,1,1,0),

Bounds for System Reliability Function 7

..
‘l

ko4

AL
l"('.'




©,1,1,0,0),(1,0,1,0,0),(1,1,0,0,0),

©,1,0,1,0),(1,0,0,0,1, 1)}
Vs =1{(0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0), (0,1,0,0,0),(1,0,0,0,0)}
Vs = {(0,0,0,0,0)}.

with | | W] | =3,] V3] | =8, |Vsl| =5and | | ¥5] | = 1. Exact values, upper and lower
bounds of 4,,/=2,3,4,5 are calculated using Equations (3), (5), (6), (10), and (11) and
tabulated in Table 2. In this example P;t is 0.088, 0.09, 0.09333, 0.£, 0.1 and P;” is 0.088,
0.085, 0.08, 0.08, 0.08 fori = 1, 2, 3, 4 and 5 respectively. Hence 7*=<1,2,3,4,5>, thus
resulting in the same values for the bounds sz) and B}” [Equations (6) and (10)]. Substituting
the upper and lower bounds for 4, in Equation (4) one obtains the bounds for the unreliability
h(p) [shown in Table 3].

Bounds for System Reliability Function 8
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m 2 3 4 5
n 0.02348992 0.00483968 0.00027392 0.00000512
Eq(3) X 4y
P 0.01786112 0.00355328 0.00023552 0.00000512
Eq(5) 2 iV
n 0.02907712 0.00571648 0.00029952 0.00000512
Eq(5) Z B§V
n 0.08493952 0.00707072 0.00029952 0.00000512
Eq(6) = B
LI 0.08493952 0.00707072 0.00029952 0.00000512
Eq(10) ’2 By
LI 0.0792 0.007392 0.0003696 0.000007392
54(11),2 B
Table 2: Exact Values, Upper and Lower Bounds for EA,.
{=m
m| Lower bound Upper bounds Using
using Eq(5) Eq(5) Eq(6) Eq(10) Eq(11)
2| 0.01786112 0.02907712 0.08493952 0.08493952 0.0792
3| 0.02220352 0.02436672 0.02572096 0.02572096 0.02604224
4| 0.02345152 0.02351552 0.02351552 0.02351552 0.0235856
5} 0.02348992* 0.02348992+ -0.02348992* 0.02348992* 0.0234901472

* Exact unreliability.

Table 3: Upper and Lower Bounds for h(p).
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